

VDRM

T(AV)

Iтѕм dV/dt*

dl/dt

KEY PARAMETERS

6500V

2840A

38900A

1500V/µs

300A/µs

* Higher dV/dt selections are available on request

Replaces DS5786-5

Phase Control Thyristor

DS5786-6	June 2022	(LN41814)
----------	-----------	-----------

FEATURES

- Double Side Cooling
- High Surge Capability

APPLICATIONS

- High Power Drives
- High Voltage Power Supplies
- Static Switches

VOLTAGE RATINGS

Part and Ordering Number	Repetitive Peak Voltages Vdrm and Vrrm (V)	Conditions
		$T_{vj} = -40^{\circ}C$ to $125^{\circ}C$,
DCR2880B65*	6500	Idrm = Irrm = 300mA,
DCR2880B60	6000	Vdrm, Vrrm tp = 10ms
DCR2880B55	5500	VDSM & VRSM =
DCR2880B50	5000	Vdrm & Vrrm + 100V
		respectively

Lower voltage grades available.

*6200V @ -40°C, 6500V @ 0°C

ORDERING INFORMATION

When ordering, select the required part number shown in the Voltage Ratings selection table.

For example:

DCR2880B65

Note: Please use the complete part number when ordering and quote this number in any future correspondence relating to your order.

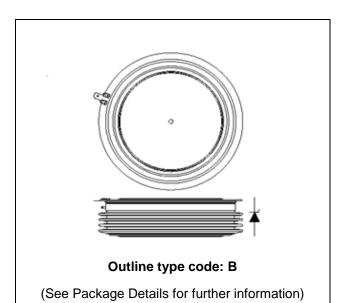


Fig. 1 Package outline

CURRENT RATINGS

T_{case} = 60°C unless stated otherwise

Symbol	Parameter	Test Conditions	Max.	Units
Double Si	de Cooled			
Ιτ(Αν)	Mean on-state current	Half wave resistive load	2840	А
It(rms)	RMS value	-	4460	А
Іт	Continuous (direct) on-state current	-	4150	А

SURGE RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
Ітѕм	Surge (non-repetitive) on-state current	10ms half sine, Tcase = 125°C	38.9	kA
l²t	I ² t for fusing	VR = 0	7.57	MA ² s

THERMAL AND MECHANICAL RATINGS

Symbol	Parameter	Parameter Test Conditions		Min.	Max.	Units
		Double side cooled	DC	-	7.0	°C/kW
Rth(j-c)	Thermal resistance - junction to case		Anode DC	-	11.5	°C/kW
		Single side cooled	Cathode DC	-	18.1	°C/kW
Balan	Rth(c-h) Thermal resistance - case to heatsink	Clamping force 76kN (with mounting compound)	Double side	-	1.4	°C/kW
Ktn(c−n)			Single side	-	2.8	°C/kW
Tvj	Virtual junction temperature	Blocking VDRM / VRRM		-	125	°C
Tstg	Storage temperature range			-55	125	°C
Fm	Clamping force			68	84	kN

DYNAMIC CHARACTERISTICS

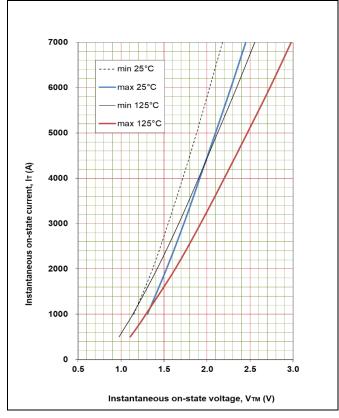
Symbol	Parameter	Test Condition	IS	Min.	Max.	Units
Irrm/Idrm	Peak reverse and off-state current	At Vrrm/Vdrm, Tcase = 125°C		-	300	mA
Vтм	Instantaneous forward voltage	At 4000A peak, Tj = 125°C		1.90	2.20	V
dV/dt	Max. linear rate of rise of off-state voltage	То 67% V _{DRM} , Тј = 125°С, g	ate open	-	1500	V/µs
dl/dt	Rate of rise of on-state current	From 67% VDRM to 2x IT(AV) Gate source 30V, 10Ω	Repetitive 50Hz	-	150	A/µs
avat		$tr < 0.5\mu s, T_j = 125^{\circ}C$	Non-repetitive	-	300	A/µs
	Threshold voltage - Low level	500A to 2600A at Tcase = 125°C		-	0.94	V
V τ(το)	Threshold voltage - High level 2600A to 7000A at Tcase = 125°C		-	1.17	V	
	On-state slope resistance - low level	500A to 2600A at Tcase = 125°C		-	0.35	mΩ
ľΤ	On-state slope resistance - High level	2600A to 7000A at T _{case} = 125°C		-	0.26	mΩ
tgd	Delay time	$V_D = 67\% V_{DRM}$, gate source 30V, 10Ω tr = 0.5µs, Tj = 25°C		-	3	μs
tq	Turn-off time	$T_{j} = 125^{\circ}C, V_{R} = 200V, dI/dt = 1A/\mu s,$ $dV_{DR}/dt = 20V/\mu s \text{ linear}$		-	1200	μs
Qs	Stored charge $I_T = 2000A, T_j = 125^{\circ}C, dI/dt = 1A/\mu s$		3540	7070	μC	
IRR	Reverse recovery current	VR(peak) ~ 3900V, VRM ~2600V		42	60	А
lı.	Latching current	$T_j = 25^{\circ}C, V_D = 5V$		-	3	А
Ін	Holding current	Tj = 25°C, Rg-к = ∞, Iтм = 50	0A, I⊤ = 5A	-	300	mA

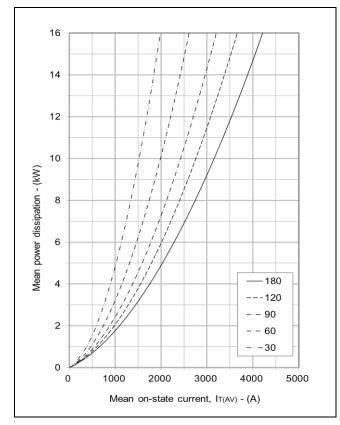
© 2 ion implant

GATE TRIGGER CHARACTERISTICS AND RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
Vgт	Gate trigger voltage	Vdrm = 5V, Tcase = 25°C	1.5	V
Vgd	Gate non-trigger voltage	At 50% VDRM, Tcase = 125°C	0.4	V
Іст	Gate trigger current	VDRM = 5V, Tcase = 25°C	400	mA
Igd	Gate non-trigger current	At 50% Vdrm, Tcase = 125°C	10	mA

CURVES




Fig. 2 Maximum & minimum on-state characteristics

VTM EQUATION

 $V_{TM} = A + B.ln(I_T) + C.I_T + D.\sqrt{I_T}$

Where A = 0.971633B = -0.042599C = 0.000173D = 0.014070These values are valid for T_j = 125° C for I_T 500A to 7000A

DCR2880B65

@2 lion

Fig. 3 On-state power dissipation - sine wave

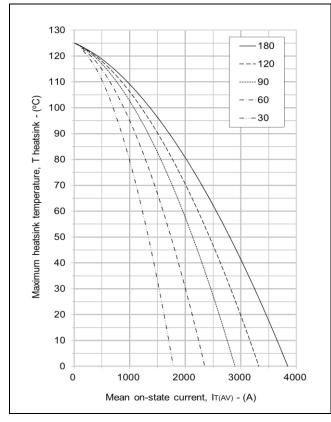


Fig. 5 Maximum permissible heatsink temperature, double side cooled - sine wave

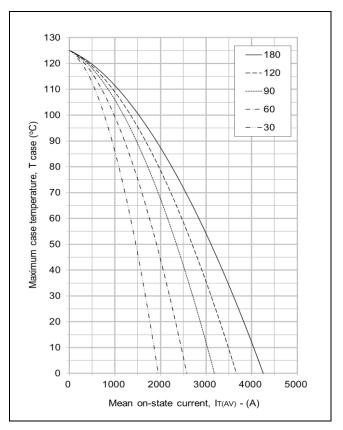


Fig. 4 Maximum permissible case temperature, double side cooled - sine wave

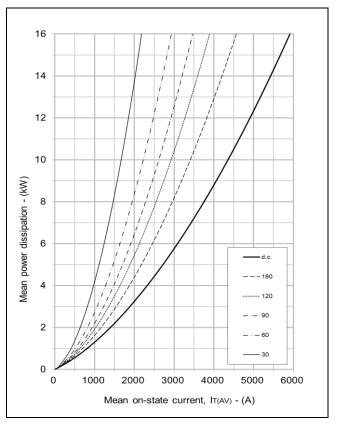


Fig. 6 On-state power dissipation - rectangular wave

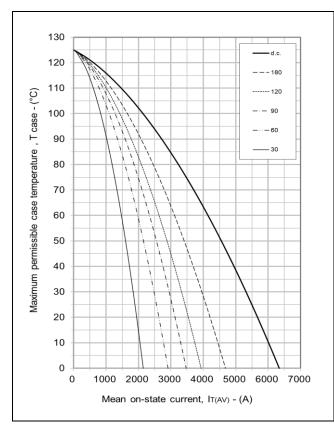
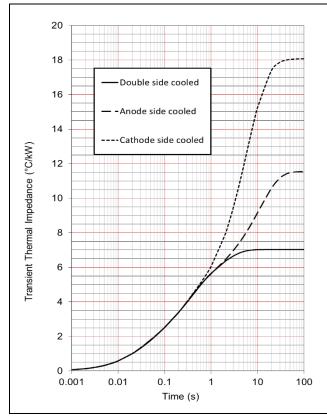



Fig. 7 Maximum permissible case temperature, double side cooled - rectangular wave

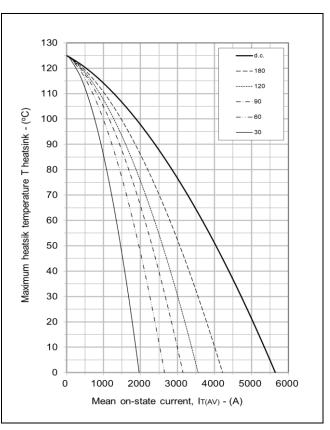
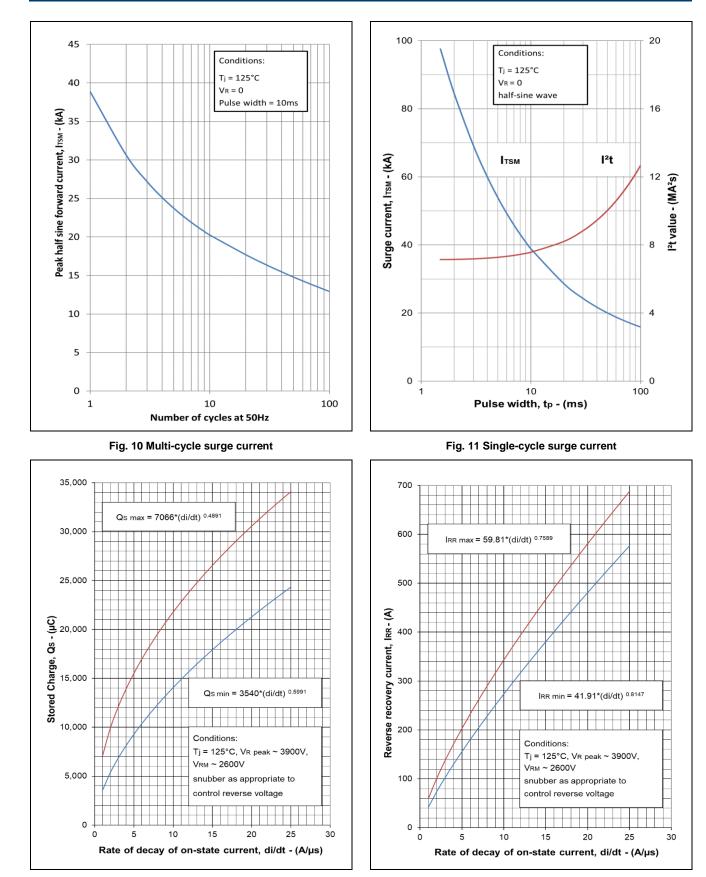


Fig. 8 Maximum permissible heatsink temperature, double side cooled - rectangular wave

		1	2	3	4
Double side	Ri(°C/kW)	0.502	1.333	2.956	2.234
cooled	Ti(s)	0.014	0.055	0.331	1.691
Anode side cooled	Ri(°C/kW)	1.304	3.138	1.186	5.914
	Ti(s)	0.025	0.241	1.081	11.002
Cathode side	Ri(°C/kW)	1.262	2.622	13.360	0.830
cooled	Ti(s)	0.025	0.201	5.785	16.765

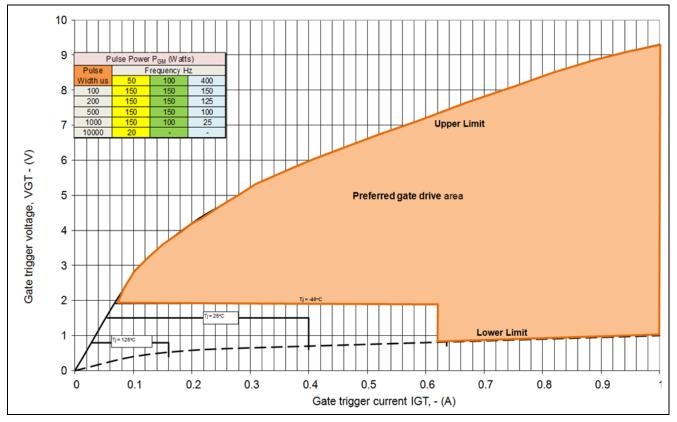
$$Z_{th} = \sum_{i=1}^{i=4} R_i \cdot \left(1 - \exp\left(-\frac{T}{T_i}\right)\right)$$


 $\Delta R_{th(j-c)}$ Conduction

Tables show the increments of thermal resistance R $_{\text{frij-ej}}$ when the device operates at conduction angles other than d.c.

	Double side cooling		Anode Side Cooling		Ca	thode Side	d Cooling	
	ΔZ_{th} (z)		$\Delta Z_{th}(z)$			ΔZ_t	_h (z)
θ°	sine.	rect.	θ°	sine.	rect.	θ°	sine.	rect.
180	0.70	0.48	180	0.67	0.47	180	0.67	0.47
120	0.80	0.68	120	0.77	0.66	120	0.77	0.66
90	0.90	0.78	90	0.87	0.75	90	0.87	0.76
60	1.00	0.89	60	0.95	0.86	60	0.95	0.86
30	1.07	1.01	30	1.02	0.96	30	1.02	0.96
15	1.10	1.07	15	1.05	1.02	15	1.05	1.02

Fig. 9 Maximum (limit) transient thermal impedance – junction to case (degC/kW)


@2 ion

@2 ion

Fig. 12 Reverse recovery charge

Fig. 13 Reverse recovery current

@2 ion impt

Fig. 14 Gate characteristics



Fig. 15 Gate characteristics

PACKAGE DETAILS

For further package information, please contact Customer services.

All dimensions in mm, unless stated otherwise.

DO NOT SCALE

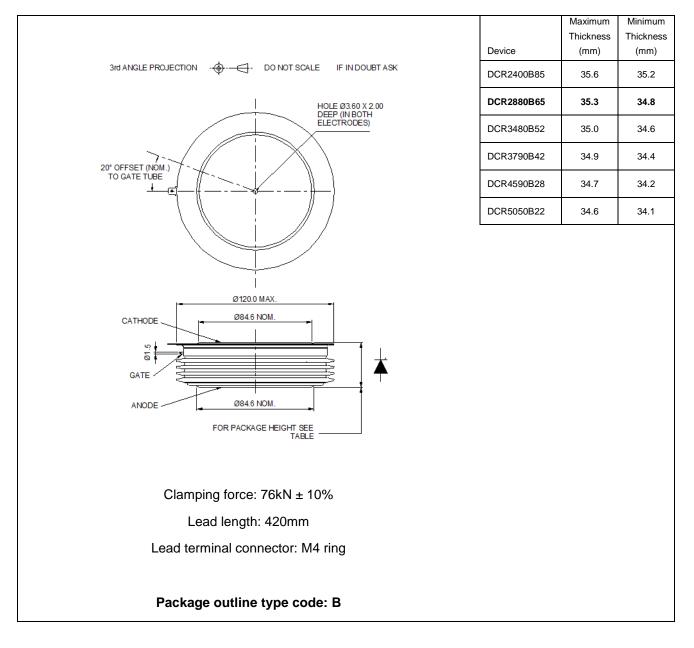


Fig. 16 Package outline

IMPORTANT INFORMATION:

This publication is provided for information only and not for resale.

The products and information in this publication are intended for use by appropriately trained technical personnel.

Due to the diversity of product applications, the information contained herein is provided as a general guide only and does not constitute any guarantee of suitability for use in a specific application. The user must evaluate the suitability of the product and the completeness of the product data for the application. The user is responsible for product selection and ensuring all safety and any warning requirements are met. Should additional product information be needed please contact Customer Service.

Although we have endeavoured to carefully compile the information in this publication it may contain inaccuracies or typographical errors. The information is provided without any warranty or guarantee of any kind.

This publication is an uncontrolled document and is subject to change without notice. When referring to it please ensure that it is the most up to date version and has not been superseded.

The products are not intended for use in applications where a failure or malfunction may cause loss of life, injury or damage to property. The user must ensure that appropriate safety precautions are taken to prevent or mitigate the consequences of a product failure or malfunction.

The products must not be touched when operating because there is a danger of electrocution or severe burning. Always use protective safety equipment such as appropriate shields for the product and wear safety glasses. Even when disconnected any electric charge remaining in the product must be discharged and allowed to cool before safe handling using protective gloves.

Extended exposure to conditions outside the product ratings may affect reliability leading to premature product failure. Use outside the product ratings is likely to cause permanent damage to the product. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture, a large current to flow or high voltage arcing, resulting in fire or explosion. Appropriate application design and safety precautions should always be followed to protect persons and property.

Product Status & Product Ordering:

We annotate datasheets in the top right hand corner of the front page, to indicate product status if it is not yet fully approved for production. The annotations are as follows:

Target Information:	This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.
Provisional Information:	Some initial development work has been performed. The datasheet represents a view of the end product based on very limited information. Certain details will change.
Preliminary Information:	The product design is complete and final characterisation for volume production is in progress. The datasheet represents the product as it is now understood but details may change.
No Annotation:	The product has been approved for production and unless otherwise notified by Dynex any product ordered will be supplied to the current version of the data sheet prevailing at the time of our order acknowledgement.

All products and materials are sold and services provided subject to Dynex's conditions of sale, which are available on request.

Any brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

HEADQUARTERS OPERATIONS

DYNEX SEMICONDUCTOR LIMITED Doddington Road, Lincoln, Lincolnshire. LN6 3LF United Kingdom. Phone: +44 (0) 1522 500500 Fax: +44 (0) 1522 500550 Web: <u>http://www.dynexsemi.com</u>

CUSTOMER SERVICE

Phone: +44 (0) 1522 502753 / 502901

e-mail: powersolutions@dynexsemi.com

© Dynex Semiconductor Ltd.

Technical Documentation – Not for resale.