



VDRM

T(AV)

Iтsм dV/dt\*

dl/dt

**KEY PARAMETERS** 

8500V

740A

9800A

1500V/µs

200A/µs

\*Higher dV/dt selections are available on request

DCR750F85

#### Replaces DS5934-6

DS5934-7 April 2024 (LN43248)

**Phase Control Thyristor** 

## **FEATURES**

- Double Side Cooling
- High Surge Capability

### **APPLICATIONS**

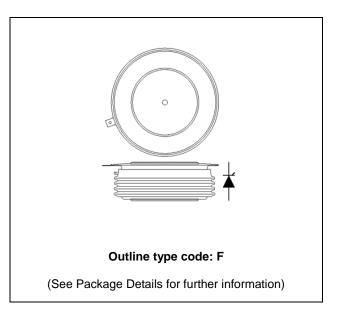
- Medium Voltage Soft Starts
- High Voltage Power Supplies
- Static Switches

## **VOLTAGE RATINGS**

| Part and<br>Ordering<br>Number | Repetitive<br>Peak Voltages<br>Vdrm and Vrrm<br>(V) | Conditions                                  |
|--------------------------------|-----------------------------------------------------|---------------------------------------------|
|                                |                                                     | $T_{vj} = -40^{\circ}C$ to $125^{\circ}C$ , |
| DCR750F85*                     | 8500                                                | Idrm = Irrm = 200mA,                        |
| DCR750F80                      | 8000                                                | Vdrm, Vrrm tp = 10ms                        |
| DCR750F75                      | 7500                                                | Vdsm & Vrsm =                               |
| DCR750F70                      | 7000                                                | Vdrm & Vrrm + 100V                          |
|                                |                                                     | respectively                                |

Lower voltage grades available.

\*8200V @ -40°C, 8500V @ 0°C


### **ORDERING INFORMATION**

When ordering, select the required part number shown in the Voltage Ratings selection table.

For example:

#### DCR750F85

Note: Please use the complete part number when ordering and quote this number in any future correspondence relating to your order.



#### Fig. 1 Package outline

#### www.dynexsemi.com

## **CURRENT RATINGS**

T<sub>case</sub> = 60°C unless stated otherwise

| Symbol    | Parameter Test Conditions            |                          | Max. | Units |
|-----------|--------------------------------------|--------------------------|------|-------|
| Double Si | de Cooled                            |                          |      |       |
| Ιτ(Αν)    | Mean on-state current                | Half wave resistive load | 740  | А     |
| It(rms)   | RMS value                            | -                        | 1160 | А     |
| lτ        | Continuous (direct) on-state current | -                        | 1150 | А     |

## SURGE RATINGS

| Symbol | Parameter                               | Test Conditions               | Max. | Units             |
|--------|-----------------------------------------|-------------------------------|------|-------------------|
| Ітѕм   | Surge (non-repetitive) on-state current | 10ms half sine, Tcase = 125°C | 9.8  | kA                |
| l²t    | I <sup>2</sup> t for fusing             | VR = 0                        | 0.48 | MA <sup>2</sup> s |

# THERMAL AND MECHANICAL RATINGS

| Symbol           | Parameter                             | Test Conditior                                  | Min.        | Max. | Units |       |
|------------------|---------------------------------------|-------------------------------------------------|-------------|------|-------|-------|
|                  |                                       | Double side cooled                              | DC          | -    | 18.3  | °C/kW |
| Rth(j-c)         | Thermal resistance - junction to case |                                                 | Anode DC    | -    | 33.3  | °C/kW |
|                  |                                       | Single side cooled                              | Cathode DC  | -    | 41.7  | °C/kW |
| Rth(c-h) Thermal | Thermal registeres ages to besteink   | Clamping force 23kN<br>(with mounting compound) | Double side | -    | 4.0   | °C/kW |
|                  | Thermal resistance - case to heatsink |                                                 | Single side | -    | 8.0   | °C/kW |
| Tvj              | Virtual junction temperature          | Blocking VDRM / VRRM                            |             | -    | 125   | °C    |
| Tstg             | Storage temperature range             |                                                 |             | -55  | 125   | °C    |
| Fm               | Clamping force                        |                                                 | 20          | 25   | kN    |       |

# **DYNAMIC CHARACTERISTICS**

| Symbol         | Parameter Test Conditions                                       |                                                                                                          | Min.               | Max.               | Units         |      |
|----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------------------|---------------|------|
| Irrm/Idrm      | Peak reverse and off-state current                              | At Vrrm/Vdrm, Tcase = 125°C                                                                              |                    | -                  | 200           | mA   |
| Vтм            | Instantaneous forward voltage                                   | At 2900A peak, Tj = 25°C                                                                                 |                    | 3.65               | 4.30          | V    |
| dV/dt          | Max. linear rate of rise of off-state voltage                   | То 67% Vdrм, Tj = 125°С, ga                                                                              | ate open           | -                  | 1500          | V/µs |
| dl/dt          | Rate of rise of on-state current                                | From 67% VDRM to 2x $I_{T(AV)}$<br>Gate source 30V, 10 $\Omega$                                          | Repetitive<br>50Hz | -                  | 100           | A/µs |
|                |                                                                 | tr < 0.5µs, Tj = 125°C                                                                                   | Non-repetitive     | -                  | 200           | A/µs |
|                | Threshold voltage - Low level                                   | 100A to 500A at T <sub>case</sub> = 12                                                                   | 5°C                | -                  | 1.03          | V    |
| <b>V</b> τ(το) | Threshold voltage - High level                                  | 500A to 2500A at T <sub>case</sub> = 125°C                                                               |                    | -                  | 1.30          | V    |
| -              | On-state slope resistance - Low level                           | 100A to 500A at T <sub>case</sub> = 125°C                                                                |                    | -                  | 2.08          | mΩ   |
| ľτ             | On-state slope resistance - High level                          | 500A to 2500A at T <sub>case</sub> = 125°C                                                               |                    |                    | 1.55          | mΩ   |
| tgd            | Delay time                                                      | $V_D = 67\% V_{DRM}$ , gate source 30V, 10 $\Omega$<br>tr = 0.5µs, Tj = 25°C                             |                    | -                  | 3             | μs   |
| tq             | Turn-off time                                                   | Tj = 125°C, Ipeak = 1000A, tp = 1000µs,<br>VR = 100V, dI/dt = 5A/µs,<br>dVpR/dt = 20V/µs linear to 2500V |                    | -                  | 1200          | μs   |
| Qs             | Stored charge                                                   | Iτ = 1000A, tp = 1000μs, Tj =                                                                            | = 125°C,           | 3000               | 4000          | μC   |
| IRR            | Reverse recovery current dl/dt = 5A/µs, V <sub>R peak</sub> = 1 |                                                                                                          | /. [LEM]           | 95                 | 118           | А    |
| Qs             | Stored charge                                                   | $T_j = 125^{\circ}C$ , dl/dt = 1A/µs,                                                                    |                    | <b>(Typ.)</b> 3160 |               | μC   |
| Irr            | Reverse recovery current                                        | VR peak ~ 4400V, VR ~ 2600V                                                                              |                    | (Тур               | <b>).)</b> 40 | А    |
| L              | Latching current                                                | $T_j = 25^{\circ}C, V_D = 5V$                                                                            |                    | -                  | 3             | А    |
| Ін             | Holding current                                                 | Tj = 25°C, R <sub>G</sub> -к = ∞, Iтм = 50                                                               | 0A, I⊤ = 5A        | -                  | 300           | mA   |

@2 ion implant

## GATE TRIGGER CHARACTERISTICS AND RATINGS

| Symbol | Parameter                | Test Conditions            | Max. | Units |
|--------|--------------------------|----------------------------|------|-------|
| Vgt    | Gate trigger voltage     | VDRM = 5V, Tcase = 25°C    | 1.5  | V     |
| Vgd    | Gate non-trigger voltage | At 50% Vdrm, Tcase = 125°C | 0.4  | V     |
| Іст    | Gate trigger current     | Vdrm = 5V, Tcase = 25°C    | 350  | mA    |
| Igd    | Gate non-trigger current | At 50% Vdrm, Tcase = 125°C | 10   | mA    |

## **CURVES**

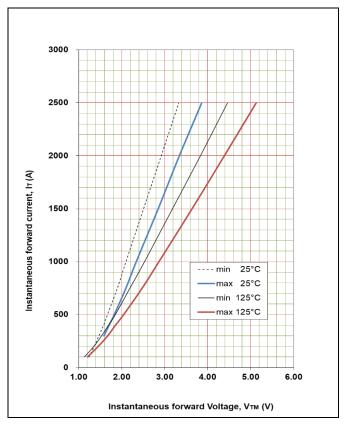


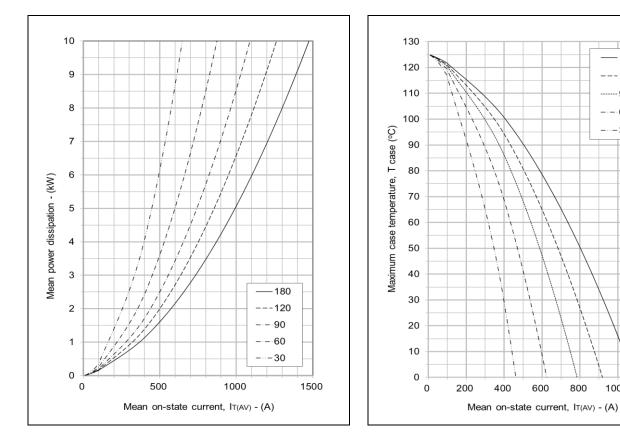

Fig. 2 Maximum & minimum on state characteristics

# **VTM EQUATION**

$$V_{TM} = A + B.ln(I_T) + C.I_T + D.\sqrt{I_T}$$

Where A = 0.263791B = 0.175445C = 0.001404D = -0.000328These values are valid for T<sub>j</sub> =  $125^{\circ}$ C for I<sub>T</sub> 100A to 2500A

-180


---120

----- 90

--- 60

1000

1200



@2 ion

Fig. 3 On-state power dissipation - sine wave

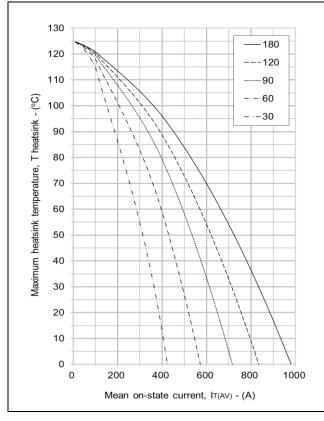



Fig. 5 Maximum permissible heatsink temperature, double side cooled - sine wave

Fig. 4 Maximum permissible case temperature, double side cooled - sine wave

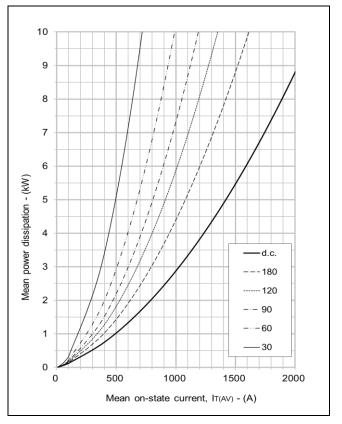



Fig. 6 On-state power dissipation - rectangular wave

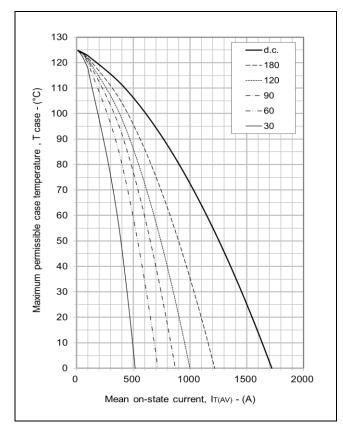
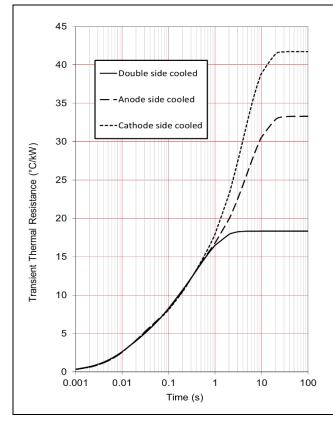




Fig. 7 Maximum permissible case temperature, double side cooled - rectangular wave



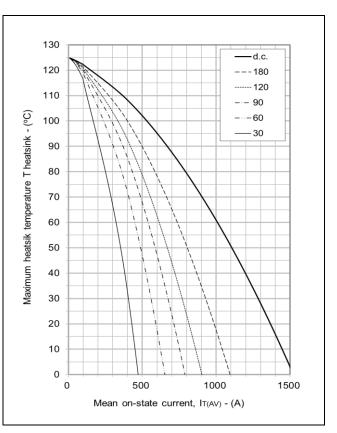
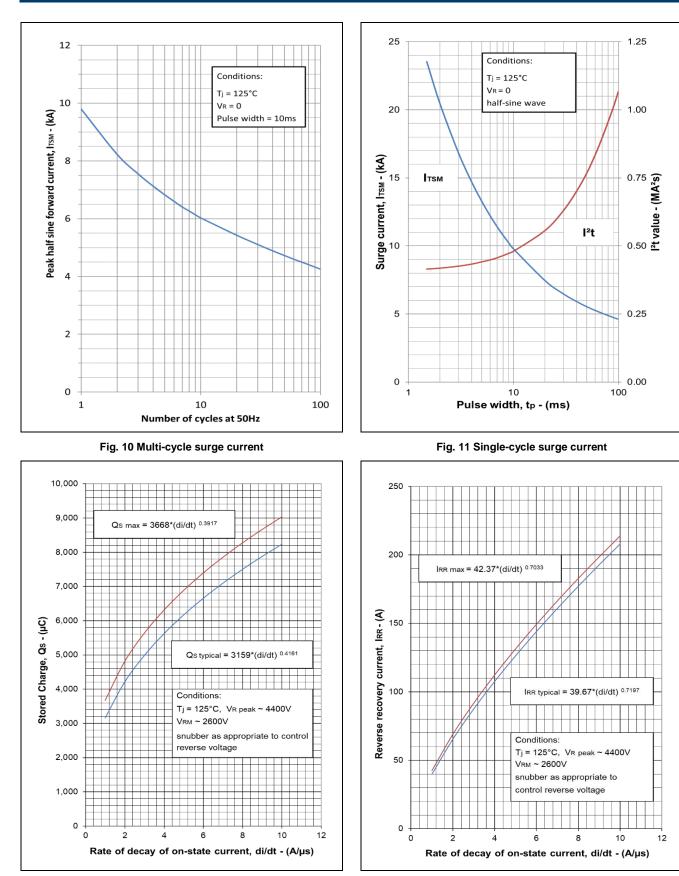



Fig. 8 Maximum permissible heatsink temperature, double side cooled - rectangular wave

|                      |           | 1      | 2     | 3      | 4      |
|----------------------|-----------|--------|-------|--------|--------|
| Double side          | Ri(°C/kW) | 7.561  | 4.077 | 3.842  | 2.867  |
| cooled               | Ti(s)     | 0.688  | 0.254 | 0.061  | 0.010  |
| Anode side<br>cooled | Ri(°C/kW) | 11.556 | 8.581 | 4.794  | 8.364  |
|                      | Ti(s)     | 4.222  | 6.027 | 0.017  | 0.226  |
| Cathode side         | Ri(°C/kW) | 6.721  | 4.622 | 15.539 | 14.863 |
| cooled               | Ti(s)     | 0.191  | 0.016 | 5.001  | 3.317  |

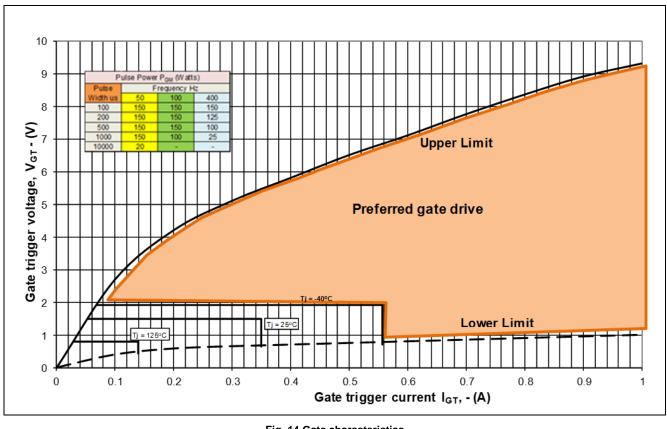
$$Z_{th} = \sum_{i=1}^{i=4} R_i \cdot \left(1 - \exp\left(-\frac{T}{T_i}\right)\right)$$


∆R<sub>th(j-c)</sub> Conduction

Tables show the increments of thermal resistance R  $_{\text{fr}(j-q)}$  when the device operates at conduction angles other than d.c.

|     | Double side cooling |       | Double side cooling Anode Side Cooling |                    |       |     | Ca    | Cathode Sided Cooling |  |  |
|-----|---------------------|-------|----------------------------------------|--------------------|-------|-----|-------|-----------------------|--|--|
|     | $\Delta Z_{th}(z)$  |       |                                        | $\Delta Z_{th}(z)$ |       |     | ∆Z,   | <sub>th</sub> (z)     |  |  |
| θ°  | sine.               | rect. | θ°                                     | sine.              | rect. | θ°  | sine. | rect.                 |  |  |
| 180 | 3.19                | 2.14  | 180                                    | 2.97               | 2.03  | 180 | 295   | 2.02                  |  |  |
| 120 | 3.72                | 3.10  | 120                                    | 3.43               | 289   | 120 | 3.40  | 2.87                  |  |  |
| 90  | 4.29                | 3.64  | 90                                     | 3.92               | 3.36  | 90  | 3.88  | 3.34                  |  |  |
| 60  | 4.81                | 4.23  | 60                                     | 4.36               | 3.87  | 60  | 4.31  | 3.84                  |  |  |
| 30  | 5.22                | 4.88  | 30                                     | 4.69               | 4.41  | 30  | 4.64  | 4.37                  |  |  |
| 15  | 5.40                | 5.22  | 15                                     | 4.84               | 4.70  | 15  | 4.79  | 4.65                  |  |  |




@2 ion



@2 ion

Fig. 12 Stored charge

Fig. 13 Reverse recovery current



@2 ion impt

Fig. 14 Gate characteristics

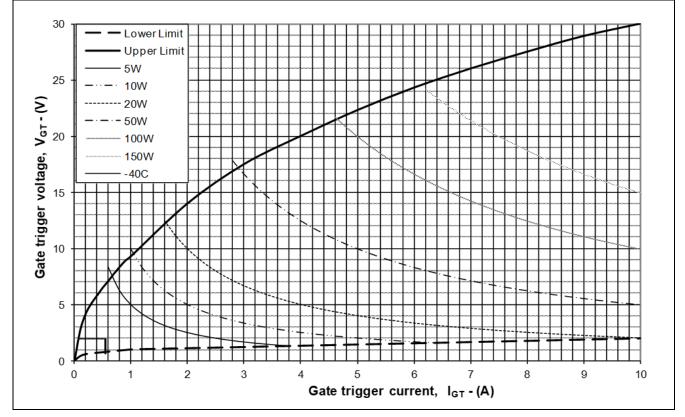
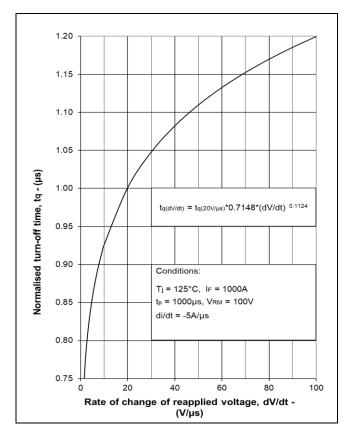
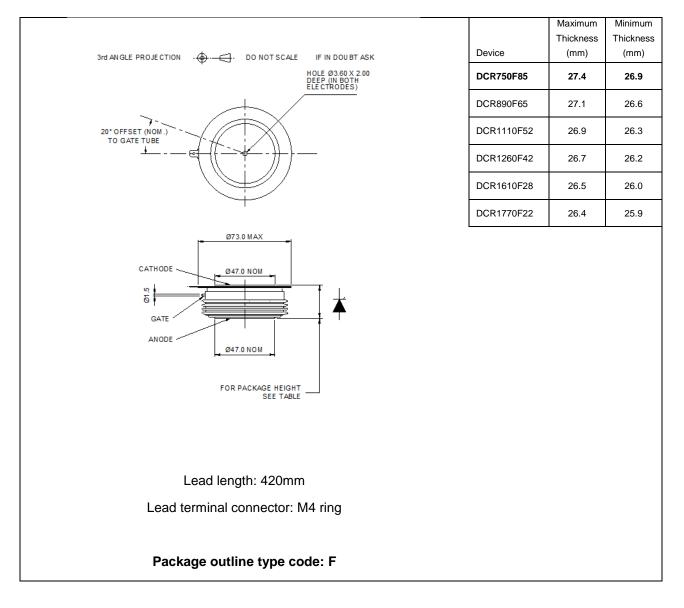




Fig. 15 Gate characteristics



© 2 lion implant


Fig. 16 Turn-off time

## PACKAGE DETAILS

For further package information, please contact Customer services.

All dimensions in mm, unless stated otherwise.

DO NOT SCALE



ion imp

Fig. 17 Package outline

#### **IMPORTANT INFORMATION:**

This publication is provided for information only and not for resale.

The products and information in this publication are intended for use by appropriately trained technical personnel.

Due to the diversity of product applications, the information contained herein is provided as a general guide only and does not constitute any guarantee of suitability for use in a specific application. The user must evaluate the suitability of the product and the completeness of the product data for the application. The user is responsible for product selection and ensuring all safety and any warning requirements are met. Should additional product information be needed please contact Customer Service.

Although we have endeavoured to carefully compile the information in this publication it may contain inaccuracies or typographical errors. The information is provided without any warranty or guarantee of any kind.

This publication is an uncontrolled document and is subject to change without notice. When referring to it please ensure that it is the most up to date version and has not been superseded.

The products are not intended for use in applications where a failure or malfunction may cause loss of life, injury or damage to property. The user must ensure that appropriate safety precautions are taken to prevent or mitigate the consequences of a product failure or malfunction.

The products must not be touched when operating because there is a danger of electrocution or severe burning. Always use protective safety equipment such as appropriate shields for the product and wear safety glasses. Even when disconnected any electric charge remaining in the product must be discharged and allowed to cool before safe handling using protective gloves.

Extended exposure to conditions outside the product ratings may affect reliability leading to premature product failure. Use outside the product ratings is likely to cause permanent damage to the product. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture, a large current to flow or high voltage arcing, resulting in fire or explosion. Appropriate application design and safety precautions should always be followed to protect persons and property.

#### **Product Status & Product Ordering:**

We annotate datasheets in the top right hand corner of the front page, to indicate product status if it is not yet fully approved for production. The annotations are as follows:

| Target Information:      | This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.                                                                 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provisional Information: | Some initial development work has been performed. The datasheet represents a view of the end product based on very limited information. Certain details will change.                                                   |
| Preliminary Information: | The product design is complete and final characterisation for volume production is in progress.<br>The datasheet represents the product as it is now understood but details may change.                                |
| No Annotation:           | The product has been approved for production and unless otherwise notified by Dynex any product ordered will be supplied to the current version of the data sheet prevailing at the time of our order acknowledgement. |

All products and materials are sold and services provided subject to Dynex's conditions of sale, which are available on request.

Any brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

#### **HEADQUARTERS OPERATIONS**

DYNEX SEMICONDUCTOR LIMITED Doddington Road, Lincoln, Lincolnshire. LN6 3LF United Kingdom. Phone: +44 (0) 1522 500500

Web: http://www.dynexsemi.com

#### **CUSTOMER SERVICE**

 Phone:
 +44 (0) 1522 502753 / 502901

 e-mail:
 powersolutions@dynexsemi.com

© Dynex Semiconductor Ltd.

Technical Documentation – Not for resale.