

DSF21545SV

Fast Recovery Diode

DS4153-5 July 2014 (LN31805)

APPLICATIONS

■ The DSF21545SV is a purpose designed freewheel diode to complement the DG858BW GTO in inverter circuits, using energy recovery snubbers.

FEATURES

- The DSF21545SV is designed for fast turn-on thus minimising reverse current through the GTO.
- Low recovered charge for low losses.
- DSF21545SV is housed in a similar outline to that of the DG858BW therefore offering complete mechanical compatibility for parallel and series clamping.

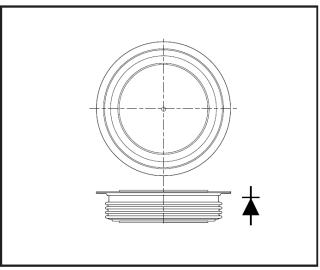
VOLTAGE RATINGS

Part and Ordering Number	Repetitive Peak Voltages V _{RRM} V	Conditions
DSF21545SV45	4500	$V_{RSM} = V_{RRM} + 100V$

Lower voltage grades available.

ORDERING INFORMATION

When ordering, select the required part number shown in the Voltage Ratings selection table.


For example:

DSF21545SF44 for a 4500V device

Note: Please use the complete part number when ordering and quote this number in any future correspondence relating to your order

KEY PARAMETERS

V_{RRM}	4500V
I _{F(AV)}	3230A
I _{FSM}	20000A
Q_r	1800μC
t _{rr}	7.0μs

Outline type code: V. See Package Details for further information.

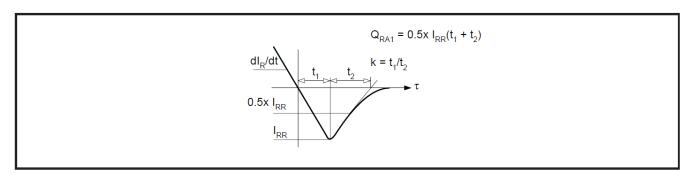
Fig. 1 Package outline

CURRENT RATINGS

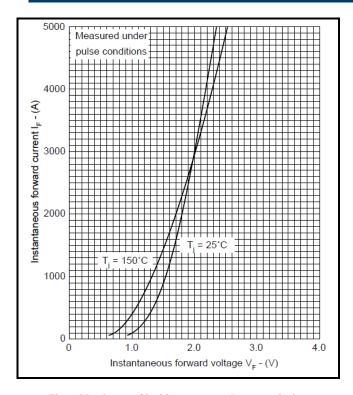
Symbol	Parameter	Test Conditions	Max.	Units			
Double Si	Double Side Cooled						
$I_{F(AV)}$	Mean forward current	Half wave resistive load T _{case} = 65°C	3230	Α			
I _{F(RMS)}	RMS value	T _{case} = 65°C -	5080	Α			
I _F	Continuous (direct) on-state current	T _{case} = 65°C -	4680	Α			
Single Side Cooled (Anode side)							
$I_{F(AV)}$	Mean forward current	Half wave resistive load T _{case} = 65°C -	2070	А			
I _{F(RMS)}	RMS value	T _{case} = 65°C	3255	Α			
I _F	Continuous (direct) on-state current	T _{case} = 65°C	2875	Α			

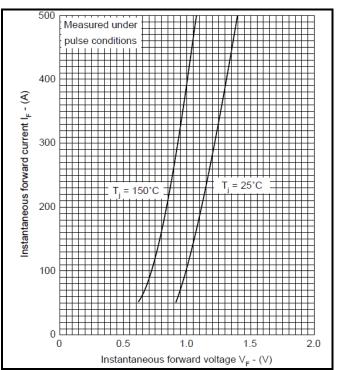
SURGE RATINGS

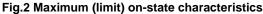
Symbol	Parameter	Test Conditions	Max.	Units
I _{FSM}	Surge (non-repetitive) on-state current	10ms half sine, T _{case} = 150°C	16	kA
l ² t	I ² t for fusing	$V_R = 50\% V_{RRM}$	1.28	MA ² s
I _{FSM}	Surge (non-repetitive) on-state current	10ms half sine, T _{case} = 150°C	20.0	kA
l ² t	I ² t for fusing	$V_R = 0$	2.0	MA ² s


THERMAL AND MECHANICAL RATINGS

Symbol	Parameter	Test Conditions		Min.	Max.	Units
R _{th(j-c)}	Thermal resistance – junction to case	Double side cooled	DC	-	0.0075	°C/W
		Single side cooled	Anode DC	-	0.015	°C/W
			Cathode DC	-	0.015	°C/W
R _{th(c-h)}	Thermal resistance – case to heatsink	Clamping force 35kN	Double side	-	0.002	°C/W
		(with mounting compound)	Single side	-	0.004	°C/W
T_{vj}	Virtual junction temperature	On-state (conducting)		-	150	°C
		Reverse (blocking)		-	150	°C
T _{stg}	Storage temperature range			-55	150	°C
F _m	Clamping force			34	48	kN


CHARACTERISTICS


Symbol	Parameter	Test Conditions	Тур.	Max.	Units
V_{FM}	Forward voltage	At 300A peak, T _{case} = 25°C	-	2.0	V
I _{RM}	Peak reverse current	At V _{DRM} , T _{case} = 150°C	-	150	mA
t _{rr}	Reverse recovery time	I _F = 1000A, dI _{RR} /dt =100A/μs T _{case} =150°C, V _R =100V	7.0		μS
Qs	Total stored charge		-	1800	μC
I _{rr}	Peak reverse recovery current			500	Α
K	Softness Factor		2	-	-
V_{TO}	Threshold voltage	At T _{vj} = 150°C	-	1.25	V
r _T	Slope resistance	At T _{vj} =150°C	-	0.25	mΩ
V_{FRM}	Forward recovery voltage	Di/dt = 1000A/us, T _j = 125°C		75	V


DEFINITION OF K FACTOR AND \mathbf{Q}_{RA1}

www.dynexsemi.com

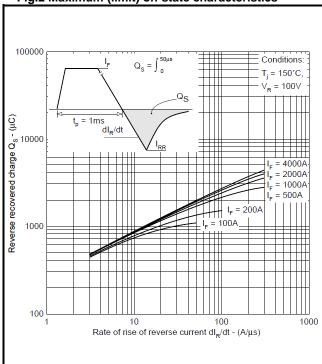


Fig.4 Recovered charge

Fig.3 Maximum (limit) on-state characteristics



Fig.5 Typical reverse recovery current

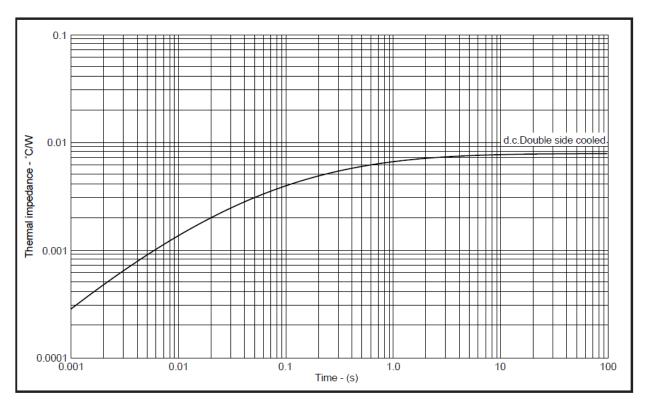


Fig.6 Maximum (limit) transient thermal impedance- junction to case

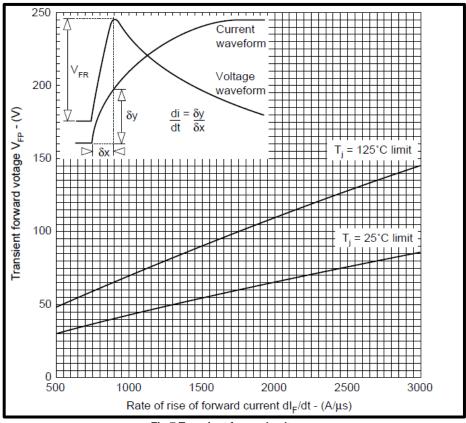
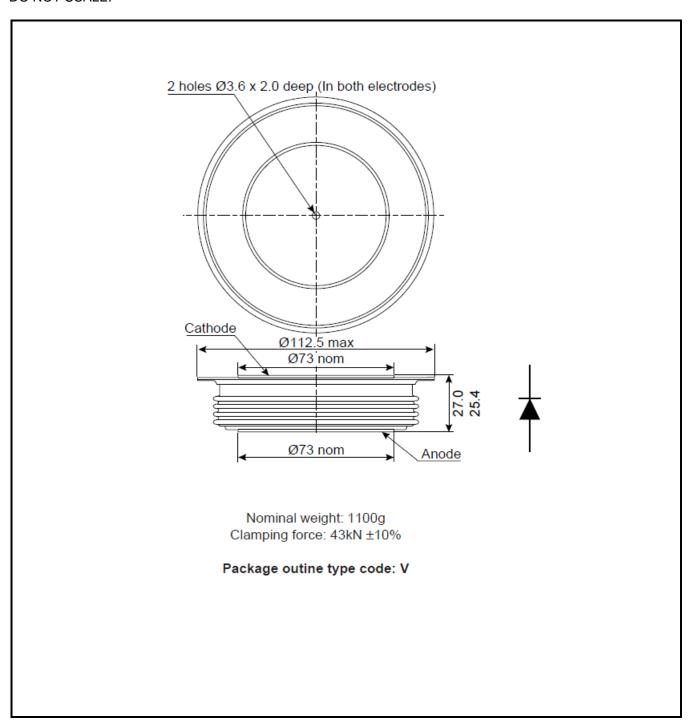



Fig.7 Transient forward voltage

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

Note: Some packages may be supplied with gate and or tags.

IMPORTANT INFORMATION:

This publication is provided for information only and not for resale.

The products and information in this publication are intended for use by appropriately trained technical personnel.

Due to the diversity of product applications, the information contained herein is provided as a general guide only and does not constitute any guarantee of suitability for use in a specific application. The user must evaluate the suitability of the product and the completeness of the product data for the application. The user is responsible for product selection and ensuring all safety and any warning requirements are met. Should additional product information be needed please contact Customer Service.

Although we have endeavoured to carefully compile the information in this publication it may contain inaccuracies or typographical errors. The information is provided without any warranty or guarantee of any kind.

This publication is an uncontrolled document and is subject to change without notice. When referring to it please ensure that it is the most up to date version and has not been superseded.

The products are not intended for use in applications where a failure or malfunction may cause loss of life, injury or damage to property. The user must ensure that appropriate safety precautions are taken to prevent or mitigate the consequences of a product failure or malfunction

The products must not be touched when operating because there is a danger of electrocution or severe burning. Always use protective safety equipment such as appropriate shields for the product and wear safety glasses. Even when disconnected any electric charge remaining in the product must be discharged and allowed to cool before safe handling using protective gloves.

Extended exposure to conditions outside the product ratings may affect reliability leading to premature product failure. Use outside the product ratings is likely to cause permanent damage to the product. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture, a large current to flow or high voltage arcing, resulting in fire or explosion. Appropriate application design and safety precautions should always be followed to protect persons and property.

Product Status & Product Ordering:

No Annotation:

We annotate datasheets in the top right hand corner of the front page, to indicate product status if it is not yet fully approved for production. The annotations are as follows:-

Target Information: This is the most tentative form of information and represents a very preliminary specification.

No actual design work on the product has been started.

Preliminary Information:The product design is complete and final characterisation for volume production is in progress. The datasheet represents the product as it is now understood but details may change.

The product has been approved for production and unless otherwise notified by Dynex any product ordered will be supplied to the current version of the data sheet prevailing at the

time of our order acknowledgement.

All products and materials are sold and services provided subject to Dynex's conditions of sale, which are available on request.

Any brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

HEADQUARTERS OPERATIONS

DYNEX SEMICONDUCTOR LIMITED Doddington Road, Lincoln, Lincolnshire, LN6 3LF United Kingdom.

Phone: +44 (0) 1522 500500
Web: http://www.dynexsemi.com

CUSTOMER SERVICE

Phone: +44 (0) 1522 502753 / 502901 e-mail: powersolutions@dynexsemi.com

© Dynex Semiconductor Ltd. Technical Documentation – Not for resale.